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Reaction paths of excited ketones:

CH CO-R CH CO-R(3s) CH CO-R

CH CO· + R· CH CO + R·

CH · + CO + R·

Fit to data:
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: primary rate

: secondary rate

DI: dissociative ionization
NI: neutral ionization.

INTRODUCTION

� Photodissociation dynamics of ketones

Multiple dissociation reactions

What are the dissociation mechanisms?

Concerted or dissociation?
Energy partitioning among products E

Dissociation rates

Is dissociation statistical? (precludes control)
How do these depend on the details of the specific system?

precursor, excitation wavelength, type of state excited

Issues:
stepwise
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Single photon excitation to 3s Rydberg state

Secondary dissociation of acetyl

Interpretation by comparison with models:

- primary decay times : ~ 2.5-2.9 ps
similar to the time scale of acetone

- tunable UV probe : reduce dissociative ionization
- decay times increase as R gets larger
- little undissociated acetyl observed

- no independent information on product energy
distribution: E (acetyl) not known

- knowledge of primary and secondary decay rates
not enough to establish the dissociation mechanism

- compare observed rate with model predictions
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E from limiting case model prediction: impulsive/statistical

E inferred from RRKM with observed decay rate

impulsive model agrees better with RRKM inferred E

statistical model predicts the trend
fixed fraction of impulsive and statistical reservoirs agree with
RRKM inferred E

int

int

int

int

�

�

�

Complementary information from product energy
analysis and theoretical calculations needed to obtain
a more comprehensive picture

ABSTRACT

The photodissociation dynamics of the 3s Rydberg state of three ketones (CH CO-R, R = C H , C H , and iso-C H ) and the ensuing dissociation of the nascent

acetyl radical following 195 nm excitation were investigated by ultrafast photoionization spectroscopy. The 3s state lifetimes of these ketones are similar (2.5-
2.9 ps), though lifetimes of the acetyl radical are 8.6(2) ps for CH CO-C H 15(3) ps for CH CO-C H , and 23(5) ps for CH CO-(iso-C H ), which suggests that

for larger R's more vibrational degrees of freedom compete for the excess energy with less energy partitioned into the internal energy of the acetyl radical.
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: fraction of the acetyl ion due to dissociative

ionization
: fraction of the acetyl ion from non-dissociating

neutral acetyl
: Normalization constant
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Background

Current investigations

Acetone: “Benchmark” multiple dissociation system

Acetyl dissociation - depends on precursor

Photodissociation dynamics for methyl-substitution on acetone
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195 nm excitation to 3s Rydberg state

Primary dissociation: predissociates via ISC to {S , T } state (4.7 ps)

Secondary dissociation: unimolecular dissociation of acetyl intermediate

nonstatistical based on RRKM comparison with E

statistical: acetyl cyanide and acetic acid (E well determined )

nonstatistical: acetone (3s, near 4s) , acetyl chloride

Primary dissociation times measured previously

2-9 ps - similar to acetone
Determine secondary dissociation times

Tunable UV probe with OPA: circumvent dissociative ionization limitation
Little product energy distribution information:

hampers clear assessment of secondary dissociation mechanism
Infer primary partitioning from secondary dissociation rate on

methyl-substitution dependence
Is secondary dissociation of acetyl statistical?
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EXPERIMENTAL SETUP
DATA ANALYSIS
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Potential Energy Surfaces for Ketone Photodissociation and
Photoionization Detection

RESULTS SUMMARY

Lifetimes of ketones and acetyl fragments and
model predictions of E of acetyl radicalsint

CH COR lifetimes (ps) E E (kcal/mol)

R ketone acetyl RRKM Imp Stat

CH 4.9 4.3 62.1(1.2) 24.2 22.4 31.1
C H 2.9 8.6 64.0(1.4) 22.6 23.0 23.3
C H 2.7 15 63.6(1.4) 21.6 22.9 18.2
-C H 2.5 23 63.1(1.5) 21.1 22.7 14.8

a. Uncertainty for parent: ~10%, uncertainty for acetyl: ~20%

b.

c. B

3 avl int

3

2 5

3 7

4 9

a b

c

iso

D D D
D D D

E = h - D

D = H(CH CO) + H(R) - H(CH COR)

H(CH CO), H(R), H(CH COR) from ref. 10

arrier height = 17 kcal/mol
vibrational frequencies of the acetyl ground state and the
transition state from ref. 11
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Coincidental ? E (RRKM) = 75%E + 25%Eint
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TIME-RESOLVED
PHOTOIONIZATION DECAYS

CH COCH3 3

CH COC H3 2 5

CH COC H3 3 7

CH CO-(i-C H )3 4 9

l probe = 340 nm

l probe = 340 nm

l probe = 360 nm

l probe = 328 nm
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Statistical Model
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- Assumes that IVR occurs much faster than
primary dissociation

- The fraction of E going into E of the acetyl

radical equals the ratio between the number
of vibrational modes in acetyl to the total
number of modes in parent molecule
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Impulsive Model
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- Assumes ketones break apart due to the
excitation of the C-C stretching mode,
prior to energy randomization

- Product energy distribution determined by
forces from sudden recoil between the two
dissociating C atoms

E(A) = E x /m = 0.5E

E (A) = E(A) x (1-m /m )

E (CH CO) = 36% E
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LIMITING CASE MODELS FOR ENERGY
PARTITIONING FOLLOWING PRIMARY

DISSOCIATION

NI

tune probe: and h + h < IPn npump probe dis2h > IPnprobe acetyl
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